Topic Test

2D representations of 3D shapes (Higher)

You will need compasses, protractor and a ruler to answer some of the questions.
1 Here is the plan view, front elevation and side elevation of a shape made from centimetre-cubes.

Plan view

Front elevation

Side elevation

Circle the volume of the shape.
$19 \mathrm{~cm}^{3}$
$36 \mathrm{~cm}^{3}$

2 Here is a shape, made from seven centimetre cubes drawn on a centimetre isometric grid.

2 (a) On the grids below draw the plan, front elevation and side elevation of the shape.

Plan view

Front elevation

Side elevation

2(b) Circle the surface area of the shape.
$7 \mathrm{~cm}^{2}$
$28 \mathrm{~cm}^{2}$
$30 \mathrm{~cm}^{2}$
$42 \mathrm{~cm}^{2}$
$3 \quad$ Here are 5 nets.

Circle the letters that show the nets of a cube.
A
B
C
D
E

4 A solid 5 cm cube is made using centimetre-cubes.

4 (a) How many centimetre cubes are used to make the 5 cm cube?

Answer

4 (b) Work out the surface area of the 5 cm cube.

The outside of the 5 cm cube is painted black.
4 (c) How many of the small cubes will have three sides painted?

Answer

4 (d) How many of the small cubes will have only one side painted?

5 The cross section of this prism is a right-angled triangle.

On the centimetre grid draw an accurate net of the prism.

6 The diagrams show a cube and a cuboid.

6 (a) Max says,
"The volume of the cube is $729 \mathrm{~cm}^{3}$ and the volume of the cuboid is $11.25 \mathrm{~cm}^{3}$
$729 \div 11.25=64.8$ so 64 cuboids will fit in the cube."
Explain why Max is wrong.
[1 mark]
\qquad
\qquad
\qquad
\qquad

6 (b) Work out how many cuboids can fit inside the cube.

7 Here is a cube of side $x \mathrm{~cm}$

The numerical value of the surface area and the volume are the same.
Work out the value of x.
[2 marks]

Answer

